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ABSTRACT

Two questions concerning bifurcation theory and optimal stochastic

control are considered. First, in a few examples, we give the interpretation

of a bifurcation in terms of optimal stochastic control. Next, we introduce

the analogue of the lowest eigenvalue for the nonlinear operator associated

with the Hamilton-Jacobi-Bellman equations of Optimal Stochastic Control.
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SIGNIFICANCE AND EXPLANATION

We consider here two questions related to bifurcation andlysis in

nonlinear elliptic equations. We first study the interpretation in terms ot

optimal stochastic control of a bifurcation in some particular nonlinear

equation and we prove that, roughly speaking, it corresponds to the appearance

of critical sensitivity of the cost function (naturally associated to the

equation by classical Optimal Stochastic Control Theory). The second question

is related to the study of spectral properties of the nonlinear operator

arising in Optimal Stochastic Control: we prove that the nonlinearity

produces two constants, that we call demi-eigenvalues, which play the same

role as the first eigenvalue of a linear elliptic operator (namely existence

of constant sign eigenfunctions, uniqueness properties, bifurcation analysis,

etc.).

-----------

jw4SPECTED

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



bIk-JCATION AND SLKihA.IC 'WN1RL

P. L. LIONS

Introduction:

We consider nere two questiuns concerning biturcation Theory and Optimal stccastlc

Control.

The first one concerns tne interpretation in terms of Optimal Stochastic Control of a

bLfurcation (in semilinear second-order elliptic equations). Let us give a typical

example: let 0 be a bounded, connected, smooth domain in R 
N . 

We consider nonnegative

solutions of

(1) -Au + Au
P 

- ku in 0, u V C
2

6) , u J 0 in 0, u = 0 on a0

where A > 0, p > 1.

It is well-known (see for example P. H. Rabinowitz (43), H. Berestycki [6], P. L.

Lions (37]) that, if we denote by A I the first eigenvalue of -A (with Dirichlet

boundary conditions), we have:

i) for 0 KA AI, the unique solution of (1) is u E 0;

ii) for A > At, there exist exactly two solu;ions or (1): ( and u where u (x) > 0

in 0.

In other words, at A = A1, there is bifurcation of the curve (A,ux) from the trivial

branch of solutions (A,O) (this is by the way an immediate consequence of the general

result concerning bifurcation trom a simple eigenvalue - see M. G. Crandall and P. H.

Rabinowitz [4]).

To give a stochastic interpretation of the solutions of (1), we introduce the

followinq Optimal Stochastic Control problems:

(2) u~lx) = inf E x Xp-iI(t'Wpexp{At - A ft p(sW )P 1
ds}dt]$( • )GK0

WK 0

CEREMADE - Universitg Paris IX - Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex

16, France.
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(3) u (x) - inf El XEJQ ~ ')Pxix tp(..p'sd

where (SI, F, F t, P) denotes a probability space with a right-continuous filtration of

complete sub-0-algebras of F - and E denotes the expectation -, where the state of

the system is given by the process x + Bt where Bt/v'
7 

is a Brownian motion with respect

to Ft . where E(t,w) is the control required to be in KO, KI which are detailed below

and where T is the first exit time of x + Bt from 5 (or 0). Finally K0 (resp. K1 )x

is the set of bounded progressively measurable processes t such that: 0 & a.e. in

R X 4 (resp. 0 4 S t a.e. in R x 9, for some 6 > 0 depending on

Remark: These optimal stochastic control problems are explained below in more details.

Let us point out for the moment that the quantity minimized in (2) or (3) is not

1 2necessarily finite but takes its values in [0,+), and that nevertheless u,, uA are

finite for every x G 6 and for every A > 0.

Our main result on this simple example states that we have:

I) l 0 < A 4 X1, then u I  u2 0;

ii) If A > A,, then ul < U 2 u. in 0.

Of course formally (1) is the Hamilton-Jacobi-Bellman equation associated with the control

problems (2) or (3) (see W. H. Fleming and R. Rishel [20), A. Bensoussan and J. L. Lions

(5], N. V. Krylov (261 for a general presentation of Hamilton-Jacobi-Bellman.equations),

1 2
t) us :t is natural that uA. uA are solutions of (1). A more interesting phenomenon is

that, since K0  is in some sense the closure of K1 , when the bifurcation occurs, the

cost function (that is the quantity minimized in (2) or (3)) becomes highly sensitive on

the values of the control E(t,w).

The second question that we consider below is concerned with the existence of

analogues or eigenvalues and eigentunctions for the nonlinear operator of Hamilton-Jacobi-

Bellman equations namely:

A sup (A v) , for o G D(O)

1 i

-2-



where A = - k 
3k a clxW is a sequence of uniformly elliptic

k b(x) k + c

operators with smooth coetticlents. We denote by A I(A,) the first eigenvaltle of the

operator A, with DLirichlet boundary conditions (corresponding to a unique -- up to a

multiplicative constant - positive eigentunction).

We introduce here two constants A1, A such that:

) t I(AI) < sup X1 (A ) 1

i1

1i) It < X II and it (fi(x))l)1 is a sequence of smooth functions then there exists

a unique solution u 4 w
2
'(0) of:

(4) sup (A u - t ) = Au a.e. in 0, u = 0 on 30
i1

111) f A < ' ana it (t (x) is a sequence of nonnegative smooth functions then

there exists a unique nonnegative solution u 4 W2, (0) ot (4).

iv) There exist 4I 1 * W
2
'(0) satisfying:

(5) AP1 = sup (A pI =X a.e. in 0, 1 
< 0 in 0, € = 0 on 30

i)1

(6) Ai 1 = sup (Ai1 ) = 1i, a.e. in 0, CI > 0 in 0, = 0 on 30
00 1

v) Let (,,A) G W2- (0) x R satisfy:

= Ap a.e. in 0, p = 0 on 30

If 0 4 0 then A X A and 10 for some 0 0 0, and if € ) 0 then, A = A and

s0 = or some 0)0.

From this list of results, it is clear that A ,X play the role of eigenvalues and

we call them demi-eigenvalues (in particular because of some relation with a result of H.

berestycki (7) concerning nonlinear Sturm-Liouville problems).

Let us also glve a simple example showinq the relevance of A , for bifurcation

problems: consider the equation

(7) Au + AjuJP-lu = Au a.e. in 0, u k W2'(0), u = 0 on 30

(*)

in -verything that follows, we use the implicit summation convention.

-3-



We prove by a simple applicdtion of the above results:

I) If A 4 Ai, the unique solution ot (7) is u 2 0,

ii) it A < A 4 , the only solutions ot (7) with constant sign are u 2 0 and u

where uA is a negative solution of (7).

ili) It A > WI' there are exactly three solutions of (7) with a constant sign namely:

u - 0, u A the negative solution of (7) and uA the positive solution of (7).

Finally let us mention that A, t have very natural stochastic interpretations (in

terms of Optimal Stochastic Control) and claims i) - v) above extend the results on the

solvability of familton-Jacobi-Bellman equations obtained by P. L. Lions [311, L. C. Evans

and P. L. Lions [17], but heavily rely on these works (for the obtention of a priori

estimates).

Acknowledgement: The author would like to thank A. Bensoussan for discussions on the first

question treated here.

1. Optimal stochastic control problems associated with bifurcations.

1.1. An example:

Let 0 be a bounded, connected, smooth domain in RN
, 

Let us consider the following

equation:

(1) -&u + AU p -Au in 0, u G C2(6), u ; 0 in 0, u 0 on 0,

where A > 0, p > 1. We recall that for A 4 A (. A I(-A)) (1) has a unique solution

u - 0 and that for A > A1 , (1) has exactly two solutions: u 0. and uA which is the

unique positive solution of (1) (see for example H. Berestycki [6), H. Amann and T. Laetsch

[3), P. H. Rabinowitz (42]).

We now introduce the optimal stochastic control problems that are associated with (1).

This is based upon the remark that (1) is equivalent to

sup (-Au + X(pt
p - I 

- I)u - A(p-1)&
p
] = 0 in 0

(1') O,

u ) 0 in 0, u 6 C (0), u = 0 on 0

-4-



indeed remark that it u soLves (I), then: 0 1 u 1 and (I) follows trom trn- r vex,ty

of ( 1'P). flext, it u solves (W), then the supremum is obtained at eacn p,i:t x

of 0 for = u(x) and this yields (1).

Let (S, F, F t, P) be a probability space with . right-continuous filtration of

complete sub-O-algebras Ft of F and with some adapted Brownian motion

t . We set B t = V-2 ;t. The state of the system we want to control is given Oy x + B

(tor x = 0). Let F be a bounded nonnegative progressively measurable process that we

will call the control, for such a control we introduce the following cost function

J(x,4) G [0,+Q].

T
(8) J(x,) = Ef oX A(p-1)P(t,w)exp[+ At -p ft tp-'ls,w)dsdt

where T is the tirst exit time of x + Bt from O (or 0).x

Next, let K 0 be the set of bounded nonnegative progressively measurable processes

and let K1 be the subset of K0 consisting of processes & satisfying:

4(t,W) 6 a.e. in R x S+

for some 6 > 0 depending eventually on

Then we introduce for all x G j

(2) u (X) = inf J(x,C)

GK 0

2

(3) uA(x) = inf J(x,)

Of course, u ) 0 in 0, u
i 

= 0 on a0{( = 1,2) and in view of the heuristic dynamic
OA

programming principle (see (20) for example) one would expect that u solve (1) (i = 1,2)

- provided these functions are at least finite. In fact, we prove:

Theorem I.1:
S 2

i) If 0 < X 4 A], then u (x) = uA(x) = 0, for all x Q 0.

ii) If A > X, then u (x) = 0, u (x) = uAx) for all x 6 0 (we recall that u lis

the unique positive solution of (1).

-5-
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Remark 1.1: As It will he clear rrom the proot, in the definition of u we may replace

KKI by

K G K0 ' VCa > 0,36 > 0 (tAT (w),w) 6 a.e. in R x (21
2x +

where T is the first exit time of x + Bt  from 0 =x E 0, dist(x,a0) > toxt

We will ylve after the proof ot Theorem 1.1 a few remarks on the existence of optimal

Markovian controls tor (3) (0 is an optimal control for (2)) and on the Cauchy problem

associated with (1).

Proof of Theorem 1.1: Since J(x,0) = 0, it is clear that u 0, WV > 0. Now, to prove

x) we need to prove that u 0 it A & A We recall first the well-known stochastic

characterization of A (see for more general results P. L. Lions (32)).

Lemma 1.1: The first eigenvalue is given by:

AT
A1 = sup( > 0, sup Ere ] < +-)

Now, if we take the constant control (t,w) = C > 0, we have:

J(xC) = A(p-UIc
p 

E fjx explAt (2 - pEP
1

)1dt

and for C small enough, we find:

J(x,C) - (p-I)CP E(exp(A(I - pCp-)) - ]

1-PEP-
1

NOW, in view of Lemma 1.1, if A < A1 the expectation is bounded independently of C and

we conclude since:

0 4 u (x) 4 J(x,t) -- 004
C+O

It A = A 1, we remark that by Ito's formula we have:

J(x,£) = A(p-1)£Pv (x)

p-1
where a = pC-, and v is the solution of:

(9) -AV =1 + 1(1 - ()v a  in O, v a C
2
(), v = 0 on 0 .

But in view of the following Lemma, we conclude since we have

-6-



01 < u2(x) 4 J(x,iE) 4 LEOVC' I 6
L 0L.(O

Lemma 1. 2: Let v be the solution (t (9); as Q goes to 0, then av converges in

2-C k ) tk_ 0," where i s the normalized eiqentunction associated with X

n- 0, C 2 (1. I > u n , = 0 on 30

I I = 1

12(O
L 2(0)

and where 0 is qiven by: P = x- dx
101

Proot ot Lemma 1.2: If we denote by w av= tv, we have

= a + X (1-a)w in 0, w > 0 in 0, w G (j). w 0 on 30

Multiplyinq this equation by ;, and inteqratinq by parts over 0, we find:

fo wf; dx = a J0  Id x + I (-a) fJC, W,,, IdX

or

(10) 1 jW dX = a0 jdx

This proves in particular that w is bounded in L 1 (0) and more precisely we have:
a LUC

f 0 w.adx I C (indep. of a1). We may now (for example) apply the method of H. Brezis and

R. E. L. Turner [101 to obtain

1w CI A 0 C (Indep. ot a)
L (0)

and by L
P  

and Schauder estimates this yields

lw I 1 2 C (0 < 1)l C2,8-(
C (0)

Now if W converqes in C2 () to some w, obviously

-Aw = A w in 0, w ) 0 in 0, w = 0 on 30, w C C 2()

and trom (10) we deduce f J0 widx =o dx . Therefore w = 86 I and

0 - fO ;Idx.
I

We next turn to the proof ot ii): we first prove that we have
2

u (x) , u2(x) = Inf J(x,&)

-K

-7-



Incieco let C 6 K I e such tnat J(x,) < * (x Is rix<, d in T) ec . *-t b

detinition ot K 1 , ti is implies:

(T [ t) exp{Xt - 0 (s' )ds1l't c +
x

Therefore there exists t -- +- such that:
n n

t

E[IT exPt - Xp f O' P (sn)ds)J - 0
0 n

x 11

We now apply Ito's tormulai to u (x + B )exp{At - Ap ft &p-' (s,)ds.} between 0 and

T A t , and we obtain
x n

u (x) = ElU (x + BT At )exp{ATx A t -
p 

X n t-1 (s,w)ds}]
X ~ n 0

x n

T At
xEx n (Ap P-(t,W)uA(x + Bt ) - A uP(x + B))

+ Elf 0t ( p -itwuX X

* exp(Xt - Xp ft P-1(s,w)ds}dt]

But: p & P-U - u
p 

IC (p-I)EP, and we deduce
X

T At

uA(X) J(x,t) + E[uA(x + BT At )exp(XTx A tn -
p f 

0 x n tp-1(s,w)ds))
x n

But the second term may be bounded by

t

luL E[(1 exp(t n - Ap n P-i(s,)dsL'(0) (x tn)- I
n

1

and this goes to 0 as n goes to ,

Bow, for a small enough, there exists u X solution of

a a a C&
6 + X(u )P Aua in 0 3, ua > 0 in 0 

, 
u = 0 on a0

X A X X X

(indeed the first eigenvalue of -A in 0a converqes to XA as a goes to 0). In

addition it is easy to show that, extending u to 0 by 0, we have:

a
uA - u in c(O)

A
4  

A

but the above proof shows that

u A(x) 4 int J (x, ) , Vx G 0 I



1( (d{ ) , (- K mIn~ we jelcc.ct r.e cV -? I ci6v. .4 ,t~ii I'

11 X

u(x) I X (F,.( t,,c)expt~t - ,- t-l;, Sd]

tot dll x k Cc, on the othur hdnd it x (, tils llne'uality is trivlilly trie. .a,

taK.Lnq a 0, we obtain:

(I1) uX(x) i cot J(x, ,)

CK 2

We now prove that:

(12) W(X) = (x,& ) = inf J(x,)

where x (t, w) = uk(x + BtAT ).
x x

We first remark that X (-A - X + Apu
- 1
) > 0. Indeed fro, the equation (1), we

oceauce:

A (- - X + u
P - 1 ) 0

and this yields the above inequality in view of well-known comparison principles for

ecqenvalues. But this implies (by an extension of Lemma I.1 which can be fount for example

in (321)

OA'[

(13) sup - Elexp(66AT X + AOAT - Ap f x up-
1 
(x + Bs) <

0 stoppinq time

tor some .> .

Thus, applying Ito's tormula to u (x + B )exp(At - pbetween and

T A t , we tind:
x

I A1

(x) E j1 4 exp{At - Ap ft Cp-1 ds) +uX x 0 x

4 fc(X + B1,)1 I ecqc(A' - A7  C F- OI)
x



Therefore
T

0 J(x,t x ) - u (x) ( C Ef T exp(At - Xp ft & '
1
ds)dt +

x

+ C E[I exptXT - Ap fT p-I ds))
(T<T) 0 x

x

rnd the first term may be founued by:

-- 6T
C f- 6[1r t exp(At - XP ft C" ds 'd I C1 e-6 dt = Ce 6  (because at (13))

while the second term is bounded by C e

Letting T + we rind: u (x) = J(x,& X ) , X G.

Now to obtain (12), we argue as follows: let a > 0, we introduce

x x

, 1i/1p-11

( 1 -) if t T rL (W
p x

Obviously a G K1 , now by similar computations as above we show:

T
0 J(x,&) - u(x) (E[f x C exp[Xt - Ap ft(&')P-'ds]dt]

t AT
x

And this last term may be bounded by:

T
a a

C EL(T - T )exp(AT - Ap fO
x 

Ex ds)] +
x X x

a

*CE[I( J X 
exp(At - Ap ft &-' ds)dt)

(T<T a)f
x

But we estimate the tirst term by

a

C E[IT - TaX '/q' E(exp(XqTL - X / - ds)]1/q

xx x 0 x

q= q q and q Q (1, + ) is determined such that:

T

E[exp(Xq To - Xpq f X &-1 ds)] 4 C (ind. of x, a)
x -

-10-



AT
this is j ssible thecause ot (13), ch(,osinq q - 1 small onough. Now since E e X <

to r < T 1 since I(e) T (w); we that: E[IT X  Ti .

Next, W, OStimate the second term by:

I
N

C 1f[H fTX exp(At X p ft '">'ds)atj C ( _ E[i exp(Xt - Xp f' pds]d(iT T r x T (T )Ot) 0
x x

c -6T
T e (in view ot (13))

And we have shown: lrn J(x,E ) = uX(x). This proves (12) and completes the proof of
0+O

Theorem 1.1.

Actually, we proved more than Theorem 1.1, namely we prove the

Corollary 1.1: if A > A, then we have:

uX(x) = inf J(x,") = int J(x,&) = J(x,& x )
CGK xGK1 K2

where is the optimal control qiven by: Cx(tw) = uX(x + b (w)).xt

Remark 1.2: A teedback control like C is called a Markovian control; thus we proved the

existence ot an optimal Markovian control.

Remark 1.3: We would like to make a few comments on the Cauchy problem associated with (1)

namely:

_u AU + Au
p 

= Xu in Ox(0,+-), u C2 (Ox(0,+-))

(14)
u(x,0) = u 0(x) in CT, u G C(Tx[O,+-)), u = 0 on DOx[0,+ )

where u o  C 0 () = (v 9 C(O), v = 0 on 30} and u0 - 0. It is well-known that there

exists a unique solution of (14) and it is a simple exercise on Ito's formula to check that

we have: Vx ,Vt p 0

u(x,t) =inf [J(x,t, ) + E[u0(x + Ht)Il< )exp(At - Xp ft P1s,)s]

cK 0  (tTx0

TAt

where J(x,t,C) E[f(0 X(P-1)& exp(xs - Xp fO CP
1
dO)dsj. Now, if X > X and it

u A 0, then it is well-known (see for example [b)) that u(x,t) - u (x) in C2(T).

-11-



Theretore, in view ot Thorel I.I, it 1 6 K, K (r K 2

im Efu (x + L (< )xAt - + ftJ (X,)T-_ x 0 0 t ( t . ,A

(Inneed, formally, tils is the c.ise wrien F vanishes "a lot" ano in tnis c,.e the t*-rr

Elexp(Xt - Xp ft FP-(lsjds) hecormes large.

RemarK 1.4: Everything we said in this section remains trivially valid it we replace -A

by a qeneral uniformly elliptic secorld-order operator

A = -a .(x)
3  

+ b (x)a + c(X)i, 1) 1 1

where a . c(0), b , c G L (0) and c > 0, . a 1)(x) v 1 4
2 

Vx G 0, V& 1 R
N  

for

some v > 0. Then we just have to replace x + b t  by the diffusion process associated

with A. We can treat as well Neumann boundary conditions or even more general ones as

au
-+ Y(x) u = 0 on 30, where Y G C (0), n is the unit outward nornal to D

at the point x of 30.

1.2 Interpretation ot solutions of semilinear elliptic equations.

Our goals in this section are first to extend the results of the previous section and

second to give a stochastic interpretation of some solutions of semilinear elliptic

equations. but as we will speak here only of optimal stochastic control problems and not

or differential games problems, the only nonlinearities which we can treat here are either

convex of concave (we hope to come back on this point in a future study). To simplify we

will look for solutions of the following three types of equations:

(15) -Au + Xt(u) = Xu in 0, u Q C (0), u ) 0 in 0, u = 0 on 30,

where X > 0, t(O) = f'(0) = 0, t CI (R), f is strictly convex and lim ft =

t
(16) -4u - Af(u) in 0, u 4 C

2
(U), u ) 0 in 0, u = 0 on a0

where X > 0, f(O) > 0, ( CI (R) and f satisfies

- either f is concave and lim t(t)t
-  

0
t-+M

- or t is convex.

-12-



of,. tirst case (equation (15)) is very simlier to the :ase treated irn tr.e Ir.. _:.4

scti o n. It is Known (see 16], [3)) that tot A ( 1 toe only solution Dr 15) i

u - 0, wnile for A > X1, there are exactly two solutions 0 and uX ot 1!)) ao,11

is the unique positive solution or (i)).

With the same notations as in the precedinq section, we introduce: V ii K
0

alx, ) = [ox A{f'( (tw)Flt,) - rl(t,wi) lexp{At - A / f'( (x,w))dtJ

since t'(t) - f(t)t ) 0 for t ' 0, we see that: 0 4 J(x,&) 4 +0.

Exactly as in the preceding section, we find:

Theorem 1.2: It f Q C
1
(I), f(0) = f'(0) = 0, t is strictly convex and lim f(t)

t

then we have:

i) I f 0 < A ( A

inf J(x,) = inf J(x,) = 0, Vx G

CGK 1  G0

ii) if A > A1

inf J(x,&) = 0, Vx G

inf J(x,&) = inf J(x,C) = uA(x) = J(xA ), Vx G 0
EK2 

e1

where tx is the optimal control given by. & (t,w) = u(x + Bt (w)).

We skip the proof of this result since it is absolutely identical to the proof of

Theorem 1.1. Let us also mention that Remarks 1.2-4 are still valid here.

We now turn to the case of (16) when f is assumed to satisfy:

(17) f 6 CI (R), f(O) > 0, f is concave and lim f(t)t
-1 

< T--
t
+ 
+.

Then it is well-known (see H. Berestycki 16), P. L. Lions [371, H. Amann and T. Laotsch

131) that (16), in this case, has a unique solution u (whi-h is positive in 0). 1.e

- 3.-



denote by q(t) = t(t) - t(0) and by h(t) = g(t) - 91(t)t. we keep the notations of

section 1.1 and we introduce for C G K0 the following cost function:

t
J(x,4) = Elf 0X (Af(O) + Xh(&(t,w)))exp{A ft f'( (sw))ds~dt]

then by a proof identical to the proof of Theorem 1.1 (even simpler) one finds:

Theorem 1.3: Under assumption (17), we have:

u(x) = int J(x,&) = J(x, ), Vx G ;K0 x

where x is the optimal control defined by: C x(t,w) = u(x + Bt (w)).

Let us also mention that analogues of Remarks 1.2-4 are still valid here.

We finally consider the case of (16) when f is assumed to satisfy:

(18) t 4 CI (R), f(O) > 0, f'(0) P 0, f is convex

Then it is well-known (see M. G. Crandall and P. H. Rabinowitz (12], I. M. Guelfand (231,

D. D. Joseph and T. S. Lundgren (241, C. Bandle [41, F. Mignot and J. P. Puel (391, P. L.

Lions [371) that there exists a constant T G (0,+"] such that:

i) If A < T, then (16) has a minimum positive solution ux. In addition, we have:

(19) X 1 (-A - Af'(u A)) > 0

ii) If A > t, then (16) has no solution;

iii) If T < A A = A and if (16) has a solution, then (16) has a unique positive

solution u . In addition we have:

(20) XI(-A - t'(U )) = 0, u = lim uA
(20 T1 I +

T

In addition, in (121, [39) sufficient conditions are given insuring that T < * and that

(1b) has a solution for X = T. Finally let us mention that in (121 and in D. G.

deFiguelredo, R. D. Nussbaum and P. L. Lions 1181, (191, various conditions on f are

given insuring the existence, for A < 1, of a solution different from uA. Nevertheless,

uA is the only "stable" solution of (1b) (the precise meaning of the stability is

explained in H. Fujita [21], P. L. Lions (351, [36]).

We keep the notations of the precedinq section and we consider again the set K0 of

bounded progressively measurable processes such that:

-14-



(t,w) 0 a.e. in R '

But, nere in order to he able to detine the cost tunction we have to restrict our controls

to tne set (depending on x):

T

K x G K0, 0( f x'pf t((,)d~t
0 0

E x

Then we detine the cost function J(x,C) for C Q Ko:
T

J(x,E) i X X{f(&(t,w)) - f' ((t,w))t(t,W)}exp(f" Xf'((s,w))ds~dt]
0

obviously J(x,C) is well defined since $ is bounded (Q K ). Finally, we look for

u(x) = sup J(x, )
GKo

We have:

Theorem 1.4: Under assumption (18) and it X < T, then we have:

u(x) = u(x) = supx J(X, ) J(X,& ), Vx G
X Kx x

0

where x is the optimal control (in KO ) defined by: &x(t,w) = u (x + B t()?. In

addition if T < -, and if (16) has a solution for A = A then we have:

u (x) = (x) = sup J(x,&) = lim J(x,& ), Vx G
X K o  A t

0

where x is the control (in K
x
0 ) defined by: 6 (t,w) = u(x + B(W)).

We see that if A < , is an optimal Markovian control, while for X = A (if (16)x

has a solution) then X detine the so-called C-optimal Markovian control. Let us also
x

mention that analogues of Remarks 1.2-4 hold here.

Proof of Theorem 1.4: We first show that: u (x) u(x), Vx Q 0. Indeed let & G K0,x

just as in the proof of Theorem I.1, there exists t + - such that:
n n

t
E )explf n At'((s,w))ds}) + 0

x nn m

Now, applying Ito's formula to u (x + B )exp(J Xf(&)ds) betwen 0 and X A t we
A t 0 x n'

find:

+ -15-



t
u~(x) ~u(Ixx tl {)exP>{f n f'({)dsfluW E~u (x + Bt ) t on

n xi

t AT

+ Etf n X(u(x + H)) - XtC((s))u (x + bs exp(J's Xf' Jis

but the first term goes to 0, because of the choice of tn , And the secono term is

larger than:
tAt

E(fon  X(Xf(&(s)) - Xf'((s)) (s))exp{f' At-(C)dO)dsl

and this quantity converges, as n + ", to J(%,&) since 4 G K
x
.0"

Next, we define C(t,w) = uA(x + Bt ()); since we have:

1  (-A - f'(u X)) > 0

a trivial application of Ito's formula shows i) that &x Q KOX and ii) that

u (x) = J(xA ). This proves the case A < T of Theorem 1.4.A x

Now if X < and if u exists, then clearly:
IA

u (x) = lim J(x,k) = lim uX(x)
I fTI X+ 

I+

and K (for A -1) since X (-A - If'(u)) > A(-A -Tf'(u )) = 0. Thus:
x 0 1 1

u (x) ' u(x), Vx G
I

But on the other hand, if & 6 e- for A -T then t G x( for every X X thus:
0 0

J(x,&) lim uX(x) = u (x) and u(x) = u (x)

and this completes the proof of Theorem 1.4.

We would like to conclude this section by a general remark: we have seen in the three

above cases a stochastic interpretation of some solution of semilinear elliptic

equations. It seems that, in general, one can give a stochastic interpretation of stable

solutions of semilinear elliptic equations (in particular if one has (-A - f'(u)) > 0

for the solution u).

-16-
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1£. ,en: -e ijenv1. ies tor the an rit r-Ja ciri -Bei La i ol'.ratOr.

11. 1. Notations and assuplptiOs.

Let 0 be d bounded, connected, smooth domdin in RN. Let (A ) bhe a se,':.e of

uniformly elliptic second-order operators:

i 2 i cI
A -a1(x)a + b (X)a k + c (x)

k k9 k

where a' b, c satisfy:

(21) suptla' I + ib~l + Ic
1
1 <

>i ki w2,0 (0) k w2,'(0) W 2,(0)
k,£

(22) 3V > 0, Vi > I, Vk h 1C) V RN: af (X)Cl~l > V10 2

We will be concerned with the following type of equations:

(23) sup (A u - f 1 0 a.e. in 0, u Q W 2,(0), u = 0 on a ;
1 1

where (fi) are given functions satisfying:

(24) sup Ifw +
i)1 W ()

This problem arises in connection with the general problem of Optimal Control of

solutions of stochastic differential equations via the argument of Dynamic Programming:

these equations are known as Hamilton-Jacobi-Bellman equations.

Let us briefly describe the associated Optimal Stochastic Control problem: we define

an admissible system A as the collection of i) a probability space (0, F, Ft, P) with a

right continuous filtration of complete sub a-algebras Ft of F, ii) a Brownian motion

bt adapted to Ft, iii) a bounded progressively measurable process i(t,W) with values

in M*, iv) a family (yx(t))xc of solutions of the equation:

idYx(t) 1 (t) (yx(t))dst - b i(t)(Yx(t))dt, t ) 0

(25)

where aI(x) = r (ai(x))1
/ 2  

(for example). For each admissihle system A, we lptine a

cost function J(x,A)

T
1(xA) = E f0

X 
f (y(t))exp(-t ci(S) (Y (s))dsdt
0 i~t) x0 x

-17-



where T is the first exit time from V of the process (yx (t)). Finally, we minimizex

J(x,A) overall admissible systems A:

(26) u(x) = inf J(x,A)
A

Let us recall brietly a few known results: 1) If c (x) ) 0 (Vx Q ', Vi ) 1) and if

there exists u W W 2,(0) solution of (23) then u is given by (26) (and in addition one

can define 6-optimal Markovida controls); 2) If c i(x) ) 0 and u given by (26) belongs

to W
2
'(0) then u solves (23) - for the proofs of these two facts, see N. V. Krylov

[26], M. Nisio [401, A. Bensoussan and J. L. Lions [5]; 3) If c Cx) ) 0, then there

exists u Q W 2"(0) solution of (23) and thus u is given by (26) - see P. L. Lions (31],

L. C. Evans and P. L. Lions [17] for the proof of this result; in N. V. Krylov 125], H.

Brezis and L. C. Evans (9], P. L. or [291, L. C. Evans and A. Friedman [16], P. L. Lions

and J. L. Mendldi [38] some ,revious results concerning the solution of (23) were

obtained. Finally let us m ' .on that the most general results concerning the solution of

(23) are given in P. L. Lions '101, [33;e [34] - including the case when the operators

A. degenerate.

Remark 11.1: In these references, sometimes, instead of "control" processes i(t,W) with

values in N*, are t.ken controls v(t,w) with values in a closed set of F (for

example). In this case the only additional assumption is that a(x,v), b(x,v), c(x,v),

f(x,v) are continuous with respect to v and everything we say below remains valid in

this case (remark that by taking a dense family (vi)i) in V, one can reduce this case

to the precedinq one).

Before concluding this section, we want to mention the method of proof used in [311,

(17] in order to solve (23): one considers the following penalized system (for each

m > I fixed):

-18-



A u 
I 

+ (u -u)= t In 0, U c2- u on 30I C 2 C C 0 o

A u
2 

+ a (u - u
3 
=t2 in 0, u 

2  
C2(-j),u = 0 on 30

(25)

A= r in 0, U, C (j), u m 0 on 30
M E E C m C £

where 8 (t) a (3(t), 6 C (a), 8(t) = 0 if t 0 0, 8'(t) > 0 if t > 0, 0"(t) > 0

if t > 0.

In 131], 117]; it is proved that it cl > 0 (Vi ) 1) and if we assume (21), (22),

(24) then: flu r C (indep. of n and of C); and, as C goes to 0,
CW 2-(0)

u G W
2
' (0) which is the solution of

C (0)
(23-m) sup (A um - f ) = 0 a.e. in 0, u Q W (0), Um = 0 on 30

Since, um  is bounded in W (0), taking m + *, one obtains the solution u = uim u
mm

of (23).

Remark 11.2: But, an easy examination of the proof of [31], (17) shows that if for £

small enough there exist (u)14i~ m  solution of (25), if IC I ( C (indep. of

L (0)
i, ,m) and if we assume (21), (22) and

sup Ifi I
i)i W (0)

(24') 3Cf

IC > , VX W R
N 

XI 
= 

I , a 2 C in V-(0) (Vi) 1)

then we have: lull C (indep. of C, i, m) and we obtain in this case, as in£ ,D
W2' (0)

[311, [17), a solution of (23-m) for all m and a solution of (23). We will use this

remark many times in what follows.

-19-



Remark 11.3: In L. C. Evans [14], [151, it is proved that it (21), (22) ani (24) ire

satistled then any solution u ot (23) satisties: u G C2' (U) for some - < I

(depending only on and the bounds in (21), (22) and (24)).

In what follows, we show in section 11.2 that roughly speaking, if (23) possesses a

pair of ordered sub and supersolutions, then there exists a solution of (23) between these

two functions. This auxiliary result will be one of the key ingredient which enables us to

prove in section 11.3 the existence of aemi-eigenvalues such as indicated in the

Introduction. Finally in section 11.4, we present various applications and comments on

these demi-eigenvalues.

11.2 An auxiliary result:

Let fi(x;t) be given functions on Q x R satisfying:

(26) sup Ifi (x,t)l 2< , WR <

i01 W (OxB R )

where B = Gt R, [I < R).

We will study in this section the equation:

3sup (AIu(x) - f I(x,u(x))) - 0 a.e. in 0

u G W2 '(0), u = 0 on a0

We will assume that there exist u, u respectively subsolution and supersolution of

(23') that is satisfying:

f sup {Aiu(x) - fi(x,u(x))} (0 a.e. in 0

sup {Aiu(x) - fi (x,u(x))} > 0 a.e. in 0(27) 1)I i i

u W 2 "'(O), u ( U 4 u on 30, u 4 - in j

Then we have the

Theorem II.1: Under assuptions (21), (22), (26) and if there exist u, u satistying (27);

then there exists u solution ot (23') which satisfies in addition u 4 u S u in

-20-



'Ii'hs result will w v,.ry u It. in tne t,)l :n s.,.ctions anI or cours 19 in

(see h. Amdnn (11, (4) tor this sl eciat I ase.

Proot ot Theorem 1.1: We firslt rke some prnliminary suostitutions: triere exises K -

such that: cl(x) + K > I in -[ Vi) and tY(x,t) + Kt is increasing for t C

(where C0  is some tixed constant larqer thdn -axIu , IN ). ve 'il denote by
L (0) L (0)

i (x,t) the tunctbons detined b)y:

(xt) = (x,t A u(x)) + K(t A ux))

and we denote by A the operator:
i 2 bi

A = -a (X)a 2 + b(x)
3  

+ (c (x) + K)
I ki ki k k+

We tirst claim that it is enough to show the existence ot u satisfying:

supAu(x) -f (x,U(x))) = 0 a.e. in 0

(23")

W2 (0), u = 0 on DO, u > u in

Indeea if this is the case, remarking that we have:

f (x,u(x)) ( f (x,u(x)) + Ku(x) in "2. 1

we deduce from the detinztion of u:

SsuplA.o(x) - t(x,u(x))} > o a.e. in 0
i1 1

u W
2

' (0), - > 0 on aO

and we conclude: u - u in O, from the following lemma:

Lemma 11.1: We assume (21), (22) and let (f))(g)) be two zoquences or functions

satistying:

supilL ii (
} < 

; f. ) g a.e. in 0, Vi ) 1

We assume there exist u, v fi W 2(0) satisfying

sup{A u - t I a.e. in 0, sup(A v - U I ( a.e. in (2
0' 1 1 i- I

u > v on

-21-



i) If u ) v in 0, then either u = v in 0 or u(x) > v(x) in 0 and
3
u av

an Y - on 30 (n denotes the unit outward normal).

ii) If c (x) ; 0 (Vi ) 1, Vx e 0) then: u ) v in 0.

(The proof of this Lemma will be given later on.)

Next, to prove the existence of u satisfying (23"), we argue as follows: for each

m fixed, we consider the penalized system:1 1 2 1 u
I  

2 1

AIU1 + (u 1 - u ) f (x,u ) in 0, u e c2(0), ul 0 on
C C C E E E E

(25')

rn m 1 n u
m  

C2-rn u o

AmUe + 8(uC - u1) f (X,U£) in 0, u e C (0),u 0 onam C rnE e C E

Obviously u is a subsolution of (25') since:

Vi 1 1, A i , fi(x,u(x)) in 0, u e w2,1(0), u 4 0 on 30

Next, recall that in view of the results of L. C. Evans and A. Friedman [16] if

1, ...,gm e C(C), there exists a unique solution U = KF of:

A1U, + 0 Cu - u
2
) f in 0, u

1 
e w

2
'p(0)(p < 1), u

1  
0 on 30

(25")

A u
m 

+ 8 (um - u ) = fm in 0, u
m 
e W

2'p(0)(p < "), urm  0 on 30

where U = (u
1
,...,um), F = (f1,...,fm). In addition K is a compact mapping from C(O)

2 1 F
2  

1 .2 2into C(O) and: KF
1 

) KF if 
I 
) F (where F ) F means fI fi, for I ( i 4 m).

Now if v e C(), v > u in 0 then If (x,v)I ( C (indep. of E, i, m) and thusL (0)

(see for example [16], [38])

sup IKi(v)I - C1 (indep. of C, i, m)
10(4m L (0)

where Ki(v) is the solution of (25") corresponding to gi 
= 

f 
(
Kv). Then if

C -(v e C(j), v > u in (, vI C }, the map
- L (0) 1 themap(K 12v)2-.K(V)) is a compact

-22-



" it Ii .,, ap t rom the i 'Irrv-x ;t- t C1 lito0k dii thus by Schaude r tIXe(I 'olI ri t .rekr -m

tnere ..It .i . ) o !'it in t t) ; I id III adi tionl wi- have:

u [1i i u ~ Uu'
C - L (0)

but titis Laiit h~ouno eriab los iin to k-ntain the tol I owl nqi -stimate my thle same metnoci as

mentioned inl teliark 11.2:

4IoU I nd(uiep. ot C , I., In

Anj J)d1;Suiiq t1) the limit (L E 0, 11 + ~)exactly as in (161, (311 we prove tne -xist fnce

ot u satistylinq (23"). And this completes; thle proof of Theorem I1.1.

1-root or Lemma 11.1: W5 will only prove part i) of Lemma 11.1 since part 11) is ontalned

m~y exaCtly trio Sarme arjUmerIt dI Iin thle proot ot uniqueness in P. L. Lions 1 31)

Now, to prove 1), we first claim that we may assume without loss of q;enerality that

cl (x) > OL > (tor some a > 0) . Indeed we have for all W , 0:

suplu t VU - (t I+ Pu) 0 i .e. inl 0

sujiiA v + Pv - (q I+ liv)) 0 a.e. in C

and cnoosini; p larqje enough, we are donie. Thus we assume: c 1 (x) a>0

(Vl > 1 , Vx t;C).-

Next, we remark that we have:

sup(A I u - v) > 0 a.e. in C, u-v G W' 2, ), u-v > 0 i n

Anii~ thus the-re exist a kX' 8 k L L (C) sa ti st yi n;:

a a 2 (u-v) + a 3 (11-v) + Y(u-v) > 0 a.e. in C
ki k k k

a kX(X) k t > VI&I 2VC 9 RN a.e. x C

1 Y '(x) > at a.e. in 0

We may ncow apply bony's maximum ptiniciple [i P tot show that either u 2v or u > v io C

And it u > v in C, toLlowinq the pruot oit M. 11. ('rotter and Ii. F. Wei nberqer (41

-23-



Ju av

concerning tne Hopt riaximum rin:cipl,, 2ne untaifrs dsIy: <  nG .

11.3 Existence dnd properties or demi-eiqenvalues:

he will keep the notdtioris or rne prece'ing sections (11.1 anc 11.2) dnj 4e intrt:-uc

the nonlinear operator A:

A,; = Sup(A~ L-( ) , If ; V 2,-(0)
i'1

Let us recall that we denote by X (A ) the first (or lowest) eigenvalue or the operator

Al  (with Dirichlet boundary values).

Our main result is the following:

Theorem 11.2: Under assumptions (21), (22); there exist two constants X such that:

i) The followinq inequalities are satisfied:

(28) _! Inf (A) sup X (Az)
0-I 1)

(29) If c (x) ) 0 in 0 for all i > 1; then: - > 0

ii) If X <) and if (f Ix)) 01 is a sequence ot functions satisfying (24) then there

exists a unique solution u G W2'(0) of

(4) sup(A u - f ) = )u a.e. in 0, u = 0 on a0

ill) If A < Ai and it (fi(x)) is a sequence of nonnegative functions satisfying (24)

then there exists a unique nonnegative solution u Q w2 '(0) ot (4).

iv) There exist ' 1 1G W2,"(0) satisfying:

(5) A u = SUP(A = A a.e. in 0, I < 0 in 0, p -= 0 on 30
i)1

(6) A = sup(A I.) = W , a.e. in 0, I1 > 0 in 0, P = 0 on 30
1- 11

v) Let (,) G W2 '(0) x R satisfy:

= Xo a.e. in o = o on 30

If P 0 in 0, then X X )- and '= 9,P for some 0 ) 0. And it €) 0 in ,

then ) = and P= 9i for some 8 ) 0.
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s eo:'xt k I14 ni v iew ,t t i s re -:jr,1it i s clI.-a r tr:,t A ~ play the r,. K

torm .1t LtIMS typIcaI ljy Lipscnit.: L j( 4 yft "-[pe(K I hnj ) Cr-j Les d [dIr Ut w~trd - -

e0qvtiva iues. This fnencnenort was !.rst ,ns.,erv.-'i .by ni. herestycki [71 it i , a

difterenit setting namely vifurcdtion theory with non-litferentiable malpinl's: in I

cons idvre: the caSe:

- u" = Xu
+ 

- w1- In (0,U), u 6 (2 0, 11), u()= u(1

where X, W > 0. But this is actually a particular case of the above case: indeed set

P = Xa and remark that the above equation is equivalent to, it C L 1,

max(-u,- - u") Xu in (0,1) u C C 2 ([0,11), u(O) = u(1) = 0

and to, it a 4 1,

min (-u", -- u") = Xu in (0,1 ), u C C 2(0,1), u(O)= U 1)
= 0

CL

Since in this specitic context it is possible to show the existence of infinitely many

d"mi-eigenvahues, it would be interesting to see if this remains true in the general

context ot Hamlton-Jacobi-fiellman equations.

Remark 11.5: Let us mention that, using the results of L. C. Evans [141, [15) one can

prove ' C2a (0) (for some ai ; (0,1)). In addition from Lemma II.1 one deduces:

a- (€ ) > 0 on 30, - (ip ) < 0 on a . einally let us mention that part ii) of Lemma
1n Ian I

II.1 remains valid if A > 0 while it remains valid it > 0 and it ti gi, u, v are

nonnegati ve.

It is possible to give a purely analytical proof ot Theorem 11.2 without any help from

Probability theory but we prefer to make a simpler proof which uses both Partial

Ditferential Equations and Probabilistic techniques. This will enable us to prove at the

same time (we keep the notations of section I1.1):

Theorem 11.3: Unaer assumptions (21), (22); the two constants -X, ot Theorem 11.2

satisfy:



1 ) We have

tx i(s

sup(A ( R, sup SUp E{ 0 exp(t - fOC (y())ds)dt) <
xiO A

1 =sup(X k R, sup sup E(exp( fT - c (y (t))dt)] < )
xigo A x

j T xt c i (s)

" 
= 

sup(X G R, sup nt E[ 0x explt - O )(yx
( s ) ) d s )d t ]  <  "

X Z A

(31)
I

sup(A G R, sup mt E(exp(TXT - f0- cl(t)(y x(t))dt)] 
<

)x0o A

11) it X < X, and it (f (x)) Is a sequence ot functions satisfying (24) then the

unique solution u in W 2'.(0) of (4) is given by:

T
(32) u(x) = int E[jf0x tt (y,(t)) exp(t - ft c(s)(Yx(s))dsldt]

(it) x0 x

iii) If A < A and if (.i(x)).i) is a sequence of nonnegative functions satisfying

(24) then the unique nonneoatnve solution u or (4) in W2,-(0) is given by (32).

We may now turn to the proof of Theorems 11.2 - 11.3 which is divided in several

steps: we need first to introduce a tew notations. We will denote by B the nonlinear

operator detined by:

B inf (A i) Q L (0), for P 6 W
2

' (0)
i>1

And we introduce the sets I and J:

I = (A G R, 3uA X W
2

'(O): Au A = AUA + I a.e. in 0, uA ) 0 in 0, u A = 0 on a 0

J = (X 9 R, 
3
vA Q W2'-(O). Bv A = AvA + I a.e. in 0, v X 0 in 0, v =0 on a0

- in view ot (17), if X C. - sup Ic.I , X I n J-
)1 L (0)

Our proof consists ot six steps: Step 1: There exist AI G R U (+f) auch that

I ) I--, WI(, J =]--, A I and -1 4 11; Step 2: A (resp. I ) is less than .ne

constant detined in (30) (resp. (31)) and they are finite; Step 3: Proof of parts ii),
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ill) of Theorem 11.2 and of parts ii), III) ot Theorem 11.3; Step 4:

Eu kU 9(resp. 4v ) h dS a X T I (resp. A + 
A ) and proot ot (30) - (31); St-p 5:

L L
Proot ot parts iv), v) ot Theorem 11.2; Step b: Proof ot part 1) of Theorem 11.2.

Step 1: There exist (6, A R U L+) such that I = T-, I [and J = 1-', _ and

We tirst prove tnat it A i I (resp. A Q J) then p G I (resp. 0 k; J) tor all

k ( A. Indeed, let us take tor example the case ot I, it A L I than for P 4 A:

Au >Iu + I a.e. in 0, u X 0 in 0, u = 0 on 30

while obviously: AO = 0. Thus by Theorem II.1, there exists u 4; W ', (0) satifying:

Au = lu + f a.e. in 0l, u • u ) 0 in 0, u = 0 on 30

and LI 1 .

Next, to prove that, tor example, I is open, we argue as follows: let 4 ; I, we

need to prove there exists E > 0 such that A + C 6I:. but, if k > 1, we nave:

A(ku ) = A(k uA) + k = (A+C)k uA + I + k- 1 - Ck uX) a. e. in 0
I

Thus choosinq C small enough such that tHu <- and k > 2, we obtain:
L'(0)

A(kuA) (X+)(ku) + 1 a.e. in 0, ku = 0 on 30

Since Au 0, we deduce from Theorem II.1 the existence of u(=u +E) such that:

Au = (+e) u + 1 a.e. in 0, u A 0 in 0, u = 0 on 30.

Finally, if A LI J, we have:

Av > Bv = AV + I a.e. in 0, v ) 0 in 0, v = 0 on 0

and since 0 = 0, we conclude that A G J from Theorem II.1.

Step 2: Al (resp. A ) is less than the constant defined in (30) (resp. (31)) and they

are finite.

More precisely, we denote by P-I 1Y

T rt il(s)
LI, = sup(X G R, sup sup E[fox exp(Xt - ct  

(v (s))ds)dtl < )
xLiO A

T

L = sup(A LI R, sup int Efrox ex,(At - t ci(S) (yx(S))ds)dt1 <)
x0o A

It Is a simple exercise that we skip to check that W -1, are also liven by:
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T

sup(A G R, sup sup EexFrXT - uX (S)(y (s))ds}] < =)

41 
= 
sup(X C R, sup int E[exp(Ai x - f 

x 
ci(s)(Yx(S))OsJ ] <

x6 Ax

Next, let A Q J (for example) and let us prove that A r -p I Let v be such that:
-1A

Bv A = AvA + I a.e. in 0, v ) 0 in 0, V = 0 on 30. Let A he an admissible system,

we apply Ito's formula to vA(Yx(t))exp{At - t ci y (s))ds) between 0 and T A T

and we find:

TAT t

VA(X) = E[v (y (TAT ))exp[XTAT - 0  x it)y x (t))dtl +xx

TAT ti(s).
+ E f0 XAi(t) (yx (t)) - AVA(Y x(t))l(exp(Xt - f c (y x(s))ds)dtl

and this yields:

TAT
X xpt t i(s)VA(X) ) E f0 exp(At - f c (y x(s))ds)dtXx

tor all T < ". Taking T + , we conclude.

It just remains to prove that U is finite (i.e. L1 < +"). Without loss of

generality, we my assume that for some 6 > 0, Q 1 ]0, 6[N 0. And clearly where

M is given by:

sup(X Q R, sup inf E[f X exp(t - f <i (yx(s))ds)dt) <
x 0 A 0

where Tx  is the first exit time from Q of the process Yx(t).

Now consider the one dimensional control problem:

N
dy x(t) = O1(t,w)dW (t) + O(t,w)dt, y x(0) = x g (0,61

where a,, b are any progressively measurable processes such that:

N 

1

where C is such that: lat I ( C, Obl I * C. Therefore, it is rlear that
L (0) L (0)
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Wi I i jven by:U

2

Pu = sup(X 4 R, sup nr Efj O exXp(t - Xt)Itl < =)
U x [o,5J A U

wnere A is any admissible s~st,-m correspondiniq to the one-dimensional proulen, where 0 x

is the first exit time from [u,6] ot yx(t) and where X0 = sup icl 1e cJair h.rO

that 0 is also given by: °i i
lia =sup(i R, u u G 2 ([0,61): -vu" + lull = -- U-UX +1 in

u) A 0, uX(0) = uX(6) = 0)

Indeed it we denote by Pi this last constant, remarking that the following equations are
0

equivalent if X Jl X0
0 I-Vu + lull =-0 + nlo ,u

-Vu~~~ +1j= - u. + in ]0,ii[, u. > 0

or

max I-auA + bul] = (X-) 0 )u X + 1 in ]0,6(, u, > 0
V(a(C

Ibl(C

we already know that if J X 0 then i0 r 10" But it is very easy to show that

0 > X0 and thus we know that Li 0 Li Next, we show that ift < - then lu l
L

as X P 0-0 Indeed it it is not the case, there exists u solution of:

00

0U

v 1u" + I j C u=L + 1 in ]0,6[, u 6 C2 (10,61)

U- (0) =u (6) = 0 , u ) 0 in [0,6]

0 0 0

But since the set of X such that there exists u as above is open (see Step 1) we have

a contradiction with the definition of PU" Thus, lu1 l +L as X + 1-' it L0 is
L0

finite. But, by the same argument as above (applying Ito's formula), we see that for

X < o

u (x) = C inf Elf 0x exp[(X - A0)t]dt]

A
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(since A < PO' this is a verification result totally similar to those introduced in N. V.

Krylov 125), [26]).

Since max UA(x) + I, as A P*., one sees immediately that
[0,6]

sup xnf E[fo exp((Co- Ao)ttdtj = +" ths Co =-0o.
[0,6 We now conclude by proving that M0 

<  
. Indeed let A < p0 and let uA 6 C2([0,6])

satisfy:
X-X 

0

- vu + juj =--u. + I in )0,6[ , u. 0, uA(O) =u,(
6
) - 0

a
As indicated before: ur(x) = C inf Exfox exp{(A - AO)t}dt] and thus is unique, therefore

uA(x) = uA( 6 -x) for x Q [0,6). In particular uA(.) = 0. In addition it is easy to6
prove that: u' > 0 on [0, -] (one may use for example the general results of Gidas-Ni-

Nirenberg [22]). Now from the equation one sees that u" 6 W'C(0,6) and v - u!

satisfies:

A -A
- vv" + v' =- v in ]0,1[ , v(O) 4 0, v() = 0

C 2 2

v Q C2(0,-) A C1
(

6
0 ,6 ])

A-A0

and thus C 0 is less than the lowest eigenvalue AI of the operator

- d2  d 6
-dx + T on the domain ]0,-[ with Dirichlet boundary conditions at 0. Thereforedx 2  d

L0 4 A0 + CA1  and we conclude.

Step 3: Proof of parts ii), iii) of Theorems 11.2, 11.3:

Let A G J (i.e. A < 1 ) from the definition of J, there exists uA, VA ew (0)

such that:

[AuX = AUA + 1 a.e. in 0, uA ) 0 in 0, u) = 0 on 30

A(-vA) = A(-vA) - 1 a.e. in 0, -vA 4 0 in , -vA = 0 on 30

And thus if (f Cx)) 01 is a sequence of functions satisfying (24) then for k large

enough we have:

sup [A (Lu ) - f > A(kuA) a.e. in 0, kuA ) 0 in
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sup [A(-KV) - r I X(-kvX) a.e. in 0, -kv X 0 in
i1

and we deduce trom Theorem 11.2, the existence of u G W2 '(0) solution of:

sup (A u - I =u a.e. in 0, u = 0 on DO
1 1

In the same way, it A A and if (fi(x))i; 1 is a sequence o nonneqative

tunctions satisfying (24), we prove the existence or a nonneqative solution u ot the same

problem (in this case take 0 as a subsolution since f ) 0, vi > 1).

Finaily to prove uniqueness of such solutions u, it is enough to show the stochastic

representation (32). But this is a simple remake of the arguments introduced by N. V.

Krylov [25), (261, using the fact that if X < (resp. X < then X < P (resp.

X <

Step 4: 3u I +A as X + I X I + as X + X Remark first that in view of
L L

the representation proved above:

T

UA(x) = int E[foX exp)(t - ft c1(s)(yx(s))ds~dtj
A

T

vA(x) = sup E[1 0 x exp{At - fcis)(yx(s))ds)dt)
X A

this implies immediately: = -1, = UI; that is part i) of Theorem 11.3. Let us

prove now that, for example, fuAI + +1 as A T " If this were not the case, there
L (0)

would exist A X such that luA I • C (indep. of n). We are going to prove that
n n A n L

this would imply: uA I 2, C (indep. of n). but this would show that there exists
n w'(0)

u G W (0) solution of

Au = u X + 1 a.e. in 0, u ) 0 in 0, u X O on 30

(pass to the limit, as n + -, as in [13), Ib)). And this would contradict the

definition of A since I is open (Step 1).

Therefore, we need to prove: lu a - C (indep. of n) as soon as luX InW w'(0) n L
nis boundeI. To sir.iplity the notations, we denote by u = 1 . Without loss of

n
generality we may assume that c l 

) , Vi I (it this is not the case, add a constant to
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both c' ana ). As in the proof ot Theorem 11.1, we know tnere Pxist -1 1
n

ot: (m I 1 is fixed)

AI un,1 +. (U n, 1 n,2 (U Ii
I C E C E l n C

A um + (U - u l; = A(m A C) + 1 in 0
m C C C C n C 0

with u
n
'n
i  

C
2
(0) u

n '
" - 0 in O, un

'
i = 0 on 30 and where C > |unI

e C C 0 L' (0)
(Vi0 1). In addition lu C for some ccnstant C1  (indep. of m, n, i, C).

But this implies as in Remark 11.2 and in the proof of Theorem II.1:

fun'l| I C (indep. of m, n, i, E)

C W 2,-(0)

Now, taking C + 0, m + m, we obtain the existence of u
n  

solution of:

A a (n .C , n 2,n  ) + I in 0, u W2(0), n w2, (0) 2

u
n 

> 0 in 0, un = 0 on 30

n n
To conclude, we are going to prove that u = u * But, rewriting the above equation as

Aun + X (un C ) un  + ' in 0, u n G W2"(0)

u n 
> 0 in 0, un  0 on 30 ;

we prove as above that any solution of the preceding equation is given by

T

un(x) = inf E[oX1I1 + 6(t)n C lexp{(i - 6(t}X t - ft ci(S)(gx (S))dsdt

A,6

where 6(t,w) is any progressively measurable process with values in {0,1}. Now since

lun 1 4 C0 , u n  
is also a solution of the preceding equations and un =n.

Step 5: Proofs of parts iv) - v) of Theorem 11.2.

From Step 4, we know that Au B + as X +T and Iv I * *" as
LO(0) L (0)

A + A-* We then define X = - A and = = obviously we h,.ve:
A' w' I(0) L (0) L (0)
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- A' +- a.e. in (. ' PA 0 n
L (0)

= A' U - a.e. in C, , € 0 In 0, 0 on 3

L (C)

and I~h =,0) X I

Now exactly as in the proot ot Step 4, we obtain:

IAl C O  , "Alw2, CP 2'-(0) 
(0)

where C0  does not depend on A (for X ) X - 1). And passing to the limit as A + -

or A I (in the same way as in [13], [16], [31]) we obtain part iv) of Theorem 11.2.

We next prove part v) of Theorem 11.2. For example let (J,X) G W 2'(0) x R be such

that:

A0 = Ag a.e. in 0, g ) 0 in 0, * = 0 on 30

We first show that A = indeed if A < XI' it is then trivial to deduce from the

stochastic representation (or the uniqueness) that 4 - 0 in 0. On the other hand if

A > A we argue as follows: first, we remark that Lemma 11.1 implies that if 4) A 0,

there exists a, 8 = 0 such that: 84 1 >' > a* 1 > 0 in 0. Now by the same verification

method as the one introduced by N. V. Krylov [25], [26] one obtains easily:

TA i(t)
Sl(x) = inf E( 1 (y x(TAT x))exp1 T^T x - f0 c (yx(t))dtl]

A

TAT
4(x) = int E[*(yx(Tylx))exp[XTT x - fOx ci(t)lYx(t))dt)]xA

for all T < -. Therefore:

TAT

Wl 1int E[g(Yx(TAT ))exp{TAT - TTx ilt)
a A xx 0o c (y (t))dtl I1

A 1x

e 4'1 (x) inC0
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and choosing T large enough, we obtain a contradiction that proves: A =

We now show that, necessarily, , = 4 1 tor some 6 > 0. Indeed, let us first remark

that by a simple application ot Lemma 11.1 we have:

S(x), (x) > U tor x G , 0 on 0

Thus t , es (tor any 0 ) 0), and if we denote by

0 sup(P > 0, Ai 1 I in U)

then necessarily: 4 o 01 in 0 and B , GI , . ut let A > 0 be such that A + > 0,

we have:

A + 4 ( + )' in 0

( +=X ( A(4 1 + X(O 1) in 0

And applying Lemma II.1, we deduce: T - i > 0 in 0 and 0 on 30.

1 n0 n ( - 04 c0 n 0

Thus there exists E > 0 such that:

(e+) 1S I' in 0

and this contradicts the definition ot 6. This proves our claim. (Let us mention that

the above argument is an adaptation of a device due to T. Laetsch (241.)

Step 6: Proof of part i) of Theorem 11.2.

We first prove (29): indeed in view of (171, it c 1 0 (V'i > 1) then there exists a

solution v 0 Q W 2"(0) of

8y 0 = 1 in 0, v0 = 0 on 30

and thus 0 Q J; since J is open, this yields (29).

From (5), we deduce:

Ai0 1  A AI i a.e. in 0, < ( 0 in 0, o! = 0 on 30

but this implies: A I(AI ) ).1; and we obtain the first part of (28).

Finally to prove the second part: let A < sup A (A), there exists i such that
I

A1 (A ) A. Thus, it is well-known that there exists uA 6 C
2
( ) satisfying:

AiuA = I + u n 0 X > 0 in 0, u = 0 on 30

and therefore: AA ) 1 + XgA in 0, u X ) 0 in O. since we have: AO = 0 4 1; applyxnq
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Theorem 11. we obtain the 4)Cistence t 11 (betw,-en 0 and u I st,ttSty inq:

Au 1 X 'i.e. 1: 0, u u in , = on 30

Ains - [ i A < 1" "'his proves (2) and completes the proot of Theore is 11.2 -

[1.3.

Remark lIl.,: As we will see in the next section, A and A possess many of the-1 1

.roperties ot the lowest e:oqenvalue tr a second-order unitormly elliptic operator. For
prprte A (Ae loes (fo soe 1) ifan

the moment let us Just mention that, obvously, A, 1 (A1) (for some I > 1) 1f ano

only it, denotrnq by v, the elgenfunction corresponding to A 1(A,), we have:

A v - A v ) 0 in 0, for all j 6 13 1 -v

In this case we have In addition: 2% -Ov i l for some 9 > 0. Indeed if = A (A ),

we have:

A - A1 (A ) 1 & 0 in 0, PI 
< 

0 in , = 0 on aC

and this implies: I = - fv tor some 0 > 0; and we conclude.

In the same way, X = AI(A ) it and only it we have:

Av -1 Aivi 1 0 in 0, for all 1 $ i

In this case we have in addition: 9,= V, for some 0 > 0.

11.4 Applications and properties ot demi-eigenvalues.

We first give a very simple bifurcation result which has only the value of an example.

We keep the notations of the preceding sections and we consider the equation:

(33) Au + AluIp-1 u = Au a.e. in 0, u G W
2'(0), u = 0 on 30

and we take A > 0; we assume (21), (22) and c ; U (Vi > 1) for simplicity. Finally

let p > 1. We will consider here only the existence ot solutions with constant sign.

vve then have:

Theorem 11.4: Under assumptions (21), (22) and if c • 0 (Vi > 1); then we have:

i) I X A < Al, the only solution ot (33) is: u i 0.

ii) If A rA the only nonnegative solution of (33) is: u - 0.

Ili) If A > -X, there exists a unique negative solution u, ot (33).

Iv) It A > ' there exists a unique positive solution uX of (33).
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in ,)ther worist, we have tile tlicwlnq tiltkurcati, ri oldrid 1 1 t0 t e quii i

tor solutions ot constant siqn):

U

-11

Figure i

Remark 11.7: It is possible to gyive, as in part I, the stochastic interpretation of uA,

uA: we will not ao it here. It is also possible to show that "uA u are continuous with

respect to A (in the space C''(O) for any a < 1) and that u. . 0 as X * A and

u, + 0 as A

Remark 11.8: On some simple examples, it is possible to show that there may be between

A and T, bifurcation of continua of solutions with no constant sign.

Remark 11.9: This type of split bifurcation diagram (and of the existence of demi-

elgenvalues) is intimately connected with the Lipschitzian character of the nonlinearity

arising in A: we will give below a striking example explaining this claim (see also [71).

Proot ofTheorem 11.4: We first show parts i) and ii). Now if A <A- using Theorem 11.3

(and the fact that d(x) = Alulp -I > 0 in '3), the stochastic interpretation of:

Au + du = Au a.e. in 0, u Q W
2
'(0), u = 0 on ao

immediately yields: u S 0.

Next, it A 1 , the claim tollows obviously from the followinq Lemma, proved belcw:
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'rhl t. v.- t-!ICtluI, S in 1 . ' h i:. , ) ' ) t I I X I

(34) su (A + + oI*;) - a .e. in t, 
=  

_

U ) _I r > 0 in C, then A" - i X iran0or y It Ey (1,or -re

> 0): in partlcular we nave thir in tt d= . e.

11) itV < L1 in 0, then X > - and A = X A it arid only it ' = 1 (tor sorn

0 < 0): in particular we have theri sup d
I  

0 a.e.

I

Proof or Lemma 11.2: We will only prove part m) since I) and 1i) are totally similar. .e

tirst show: I ." ndeed it X < X from Theorem 11.3 and usinrq the stoch~stic

representations, it is easy to conclude: w R 0. Now, it A = AX ' let 0 ne aefined hy:

6 = sup (U > 0, Wip 1 4 'p)

It p Oip, we are done since we have then:

sup(Ain)) = sup(An, + dO I ) > sup(Alip) + (lnt d )1P
i i1 1 ii 1 i0 1 >

If IJ 0 61, we argue as tollows: we tirst observe that

stp(Ai * + dlip) - sup(AiOp ) = ij( - 6) a.e. in 0.

)11 i>1

On the other hand there exist akV, a T (0) satisfying:

2 N1ky(x)Kk&t X vl l
2
, 4i R , a.e. in 0

and such that:

sup(A.1p) - sup(A1e1 = -641ak£ - e ) + +kak(1 - eni) y( - ) a.e. in C
kk1 kX k

1> 1>1kS k

And this yields:

_ k(1) + kkEa - n ) + ( -I ( -Y I)

> (inf dl)4? a.e. in C
i)1

- (6i w2 '(0) w -2,- 0 0 in 0

-;(7-



And using bony 's maximum fr: o , Ik [i H I as In the pJroot Ut Lemma II.1 we dleduce:

> 0 
(  

- ) n 0, ad this contradicts toe (lefinitlon of 9.

This c(mpletes te proot or t Le I-mnd.

We now turn to the proot rit iv) in Theorem 11.4 (since the proof of Ili) is Identical,

we will skip it). Let A >X and let us show the existence of 
u
A' we first remark that

tor E smdil ,'houqh, we have:

MC + + A O

4 C A1 a.e. in 0

Sg W 2,- (0), C O, U on 30

on the otner hand there exists K large enough such that K ) Cli I and K ) 1: thusL
i

A(K) + AK
P 

> AK in 0 , K > * I in0

Then, applying Theorem 1I.1, the existence of UA is proved.

Next, let uA, vX be two positive solutions ot (33); we may assume without loss of

generality that u A 9 vA and we are qoing to use an argument due to H. Amann and

T. Laestch (3]. Let k = sup(U (0,I), 1uU u VV, necessarily k < I and we have:

vA )ku A in Now we have:

A(ku + Xk up = Xku and thus A(ku ) + Akpup 4 ku
A A A A A

therefore:

AvA - A(kuA) + Ip v-; - X)(vA - kuA) ) 0 in 0

and from Lemma 1I.1 we deduce: vA - ku > 0 in 0, a - (vA ku) < 0; on 00; which

contradicts the definition of k. This proves the uniqueness and we conclude.

Remark 11.10: We only used tie tact that f(t) = At - At
p  

satisfies (tor A > A]: L"1
Wt'(R), f(t)t is strictly decreasing on R+, f'(0) > 11 and lim f(t)t

- 
<

t +

We now conclude by a result, announced in Remark 11.9, showing that the existence of

demi-eigenvalues and of split bifurcation diagrams is mainly a consequence of the Lapschitz

character (and non-differentiability) of the nonlinearity arising in the operator A. The

example that we give below can be interpreted in terms of optimal stochastic control but we

will not do it here.
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t. t i rs t r-IlnArK that It 4.- ttK1 t I r I

A A +

wi .t It riM. tamily I - i = 1), then:

A,; -AV + )Vrl , V " c

Tihus 'thcorem 11 2 yields ill particular: A > A I1 1

I) I L ther(! exists t unique solution u C (0) of

-A% + IVu 1 + XutA in 0, U X 0 in 0, u =u on a0

11) A; A UA,'-7 conver1es in C (0) (and thus in C (T) to the unique solution

L
4)1 ot :

-A p, + VIP, I = , in 'P1 > 0 in 0, , I = I, 1 , = 0 on ao
L

iii) Finally, it p 6 C2 (0) satisties:

-A + Vip] X in 0, > 0 in u, ' = 0 on aO

then A = A and 6 
=

p tot some 0 > 0.

we now consider a somewhat related proolem, namely:

135) -AuA + IVuAI B 
= 1+ XuA, 'A 0 0 in 0, u= 0 on a1

(3b) _AuA + >~A) U in 0, u 0 on

where b > 1.

Proposition 11.1:

) For all X > 0, there exists a unique solution uX oft (35) and u is continuous

witri respect to A (tot example in the space C'(0)).

ii) It A ' A there is no solution or (3o); while it A > A there exists a unique

positive o (36) and u. is continuous with respect to X (for example in

the space C2(0)).

Proof ot Proposition 11.1: Since this proposition is not essential tor ,ur concern here,

we wiil indicate only the main lines ot its proot. we tirst shw that it k is i unlei,

then solutions ot (35), (3b) are a priori hounded in W (0) (and thus in C (Q2(: tne

existence can then be obtai ned ny the techniLqtis of I ).. Li ens ( 2t). Wk. wli , I r 'W.

the uniqueness ot UA' 0A"

A 9



ine ~root (, the A priorl Iuros for x, ' uX dre totally similar ano 4e il ,r

only rur uA' We rque ds follows: first r, idrx tndt we nave:

fO JVuj 2 IX + fO lVU Aux r fO u ox + X fo OX

t iu = ux(-L)I f VU C 
1o U dy tor some constant C( (6)) > u

and where 6 = - (0+1) > 2 and this shows: iu i 4 C. Therefore u is r)oundec inN-1 X1A

2N/(N-2) p I
L (0) (in LP(0), p < I it N 1 2) and remarliinj that we have: -Au ( 1 + Au

In U, u) U we then deduce by a straightforward bootstrap argument:

Iu AI L'0)fC.
C (0)

Using this bound it is easy to show that, on a convenient neighborhood of the boundary

r = ix t 0, dist(x,a0) < £1, we have:

- A(16) + JV(u6)1 ) I + A u in i

16 > uA on ar:

for some large enough constant u > 0 and where 
6
(x) = dist(x,aO). This implies:

auA
au X I- C. And using the results of P. L. Lions [28], one then obtains:

L (a0)
lul ( C

W (0)

We conclude by giving the proof of the uniqueness of uA (the same argument works for

UA): again we will use the device of Laetsch [27]. If vA, uA are two solutions and if

u X v), we denote by: k = sup(P Q (0,1), UuA vA in 0). Then k < 1 and kuA X vX.

Next, we have:

-A(ku X ) + IV(ku X I k( + AuA) X 1 + Y(kuA) ( -Av X + IVv XI

and trom the maximum principle, this yields:

ku < v in 0 , .n (kux - %) > 0 on aO

which contradicts the definition or k.
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